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LETTER TO THE EDITOR 

Cluster shapes in lattice gases and percolation 

C Dombt, T Schneider and E Stoll 
IBM, Research Laboratory Zurich, Saumerstrasse 4, 8803 Riischlikon, Switzerland 

Received 4 August 1975 

Abstract. An analysis is undertaken of the mean surface S of clusters of size n from Monte 
Carlo data simulating a two-dimensional Ising model. At sufficiently high temperatures the 
data represent a percolation process and it is found that the clusters are completely ramified 
(tree- or sponge-like). At temperatures just below T,  the data do not correspond to circular 
droplets as assumed in standard nucleation theory and typical samples show a great deal 
of ramification. It is concluded that the parameters in Fisher’s droplet model are empirical 
and should not be given a direct physical interpretation. 

The droplet model of condensation was first introduced in the 1930s and has subse- 
quently played a central role in nucleation theory. It showed how supercooled droplets 
can exist in a metastable condition and provided an apparatus for the calculation of the 
lifetime of these metastable states (for a review of early ideas see Frenkel 1945). The 
droplets were always considered to be spherical; it was realized that other shapes of 
droplet could arise but a detailed investigation was considered unnecessary since such a 
refinement could not seriously affect the general conclusions of the theory. 

The first suggestion that the model might be useful in describing critical point 
behaviour was made by Essam and Fisher (1963) and the treatment was amplified and 
extended by Fisher (1967). Droplets of all shapes were taken into account and the shape 
was conveniently characterized by a single parameter (T, where for large n 

s - An“. (1) 

Here n is the number of molecules in the droplet and s its surface area ; (T could take all 
values from a minimum o0 corresponding to the most compact shape (i in two dimen- 
sions and 3 in three dimensions) to 1 corresponding to tree-like or sponge-like shapes ; 
and A is a constant of order unity to differentiate for example between spherical and 
cubical shapes with the same value of 0. 

For the number of droplets of given 0 Fisher proposed the form 

( l ( ( T ) ) s / S r ( O ’  (2) 
where A(a) is a constant related to the surface entropy and T ( ( T )  an exponent similar to 
that for self-avoiding polygons on a lattice (see eg Domb 1969). He constructed a parti- 
tion function and, using standard ideas of statistical mechanics, assumed that one 
particular set of parameters 5, T would dominate asymptotically. The thermodynamic 
behaviour of the condensing gas could then be described in terms of these two para- 
meters. Critical exponents could be expressed in terms of s ,?  and, using exact results in 
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two dimensions and estimates based on high-temperature series expansions in three 
dimensions, the following numerical values were assigned to d and i : 

5 , s -  15  - 0.533, 7 = H 1 2.067 in two dimensions 
(3) 

B 0.64, 7 z 2.2 in three dimensions. 

The above development provided a great stimulus to the theory of critical behaviour 
since it proposed exact relations between critical exponents and paved the way for the 
subsequent scaling hypothesis (see eg Vicentini-Missoni 1972). However on closer 
scrutiny a number of defects of the model became apparent. The excluded volume effect 
is ignored, ie that no two droplets can occupy the same region of space: this is of increas- 
ing importance as the density of droplets increases. Gaunt and Baker (1970) pointed 
out that the model gives invalid results when T > T,. Fisher himself noted that the 
three-dimensional estimate of B quoted above is geometrically impossible, and the 
exponent must therefore be regarded as an ‘effective average’. 

In view of these defects it is important to investigate whether the exponent values in 
(3) can be given the physical interpretation that the droplet shapes remain fairly spherical 
(or circular) as the temperature moves up to the critical region or whether they are to 
be treated as empirical parameters. It has been suggested recently by one of us (Domb 
1975) that, whereas at sufficiently low temperatures compact spherical droplets should 
dominate, at higher temperatures ramijied droplets of tree-like or sponge-like shape 
should become increasingly important. The dominant value of o should therefore 
change with temperature. 

Droplet or cluster shapes are also important in the theory of percolation and dilute 
magnetism (see eg Essam 1972). Here the clusters considered are purely random and 
no excluded volume effects arise. It has been argued (Domb 1974) that only ramified 
clusters with o = 1 play a significant role in the problem (see also Stauffer 1975). 
Attention has also been recently drawn to percolation effects in Ising systems at 
different temperatures (Muller-Krumbhaar 1974, Coniglio 1975) ; in three-dimensional 
systems infinite clusters can occur at temperatures well below T,. 

The aim of this letter is to present Monte Carlo data obtained with a two-dimensional 
one-spin-flip Ising model (Glauber model) in an endeavour to throw some light on to 
these points. For a detailed discussion of our Monte Carlo procedure and its limita- 
tions in the simulation of an infinite system we refer to Stoll et a1 (1973) and Schneider 
and Stoll(l974). Here we have considered a 1 10 x 1 10 Ising system on a simple quadratic 
lattice subject to periodic boundary conditions. On this basis we identified the clusters 
by labelling all down-spins connected by nearest-neighbour bonds in such a way that 
different clusters contain spins with different labels. To evaluate the surface of a 
particular cluster we counted the number of spin reversals at the cluster border. This 
takes account of inclusions which may be important for ramified clusters. In this 
manner we calculated the distribution function P(n, s) where s is the surface and n the 
cluster size. Given this distribution it is then possible to calculate the size dependence 
of the mean surface 

Our data revealed that the function P(n, s) as a function of s for fixed n has a single peak. 
In figure 1 the mean surface given by (4) is plotted against n for a series of different 

temperatures above and below T,. The scale is logarithmic so that the asymptotic value 
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Figure 1. Mean surface s as a function of cluster size n plotted on a logarithmic scale for a 
number of temperatures. (Each point is the average of at least I 0 0  clusters: sparser data are 
not reproduced.) 

A, TIT, = 2.0: B. T/T, = I.3;C, TIT, = 1.1 ;D, T/T, = 0.958:E, TIT, = 0.9:F, T = 30. 

of the slope should provide an estimate of (T in (I ) .  The convergence to this limit must 
necessarily be slow because of the logarithmic scale, but for values of n of the order of a 
few hundred or more the data should provide reasonable estimates. 

When T -+ 00 the problem is one of pure percolation and we find that (T --* 1 quite 
accurately (0.005) for n > 50. The data therefore confirm that ramified clusters are 
dominant in the percolation problem. When T/T, = 2 we still find that (T --* 1 accurately 
when n > 250; the problem is still one of almost pure percolation although the value 
of A in (1) must be slightly decreased. When TIT, = 1.3, although the limiting value of 
(T = 1 is still attained with the same accuracy, asymptotic behaviour does not set in 
until n - 500, and the value of A required to fit the data asymptotically must be further 
decreased. When T/T, = 1.1 the limiting asymptotic behaviour o f0  = 1 is not attained 
until n - 1500, and A must be further decreased. 

When T < T, the data are much more restricted since the probability of obtaining 
large clusters in the sample is much smaller. For T/T, = 0.958 we find an effective value 
of (T = 0.75f0.05 for 80 < n < 320; for T/T, = 0.9 we find approximately the same 
value for 80 < n < 160. We do not think the asymptotic limit has yet been attained 
but we consider that these values are sufficiently far from the estimate (3) to justify the 
conclusion that ramified droplets are important near T,. 

To confirm this view we have plotted a few typical cluster shapes for T/T, slightly less 
than 1 in figure 2. For a more extensive demonstration we refer to the motion picture 
of Stoll and Schneider (1972, ‘Computer simulation of a two-dimensional Ising model’, 
available on request) showing in detail the evolution of spin configurations. From 
figure 2 it will be seen that the clusters manifest tree-like characteristics and differ 
markedly from a circular shape. In an earlier communication (Stoll and Schneider 
1972) attention was drawn to disagreement between Monte Carlo simulations and the 
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Figure 2. Some typical clusters for T < T,: (a)  TIT, = 0.958. (6) TIT, = 0.979. 
(e )  TIT, = 0.99. The 'tree-like' character of the clusters should be noted, and the increase 
of ramification as T approaches T,. 

simple Frenkel picture of a circular or spherical-shaped droplet ; the observed devia- 
tion from circularity in droplet shapes was then termed 'border anisotropy'. 

Our conclusions for T/T, = 0.9 differ from those of Binder and Stauffer (1972) who 
attempted a similar analysis and found a value of 0 close to for larger n (in fact they 
suggested that the slope of the curve in figure 1 decreases with increasing n which is the 
reverse of our general finding). We believe that the statistics at our disposal and those 
which were available to Binder and Stauffer need further investigation. 

We should like to comment finally on the significance of clusters in the percolation 
and Ising problems. As we lower the temperature from T = CO to T = 0 in the Ising 
model we pass gradually from clusters which have purely geometric significance and 
play no part in the physics of the problem, to clusters which are true 'droplets' and are 
of central physical importance. In the former case neighbouring spins are uncorrelated 
and the linking together of neighbouring spins in a cluster is a geometrical property. 
As the temperature is lowered physical effects begin to manifest themselves as a result 
of correlation between neighbouring spins, but in the neighbourhood of T, it is doubtful 
whether these clusters themselves are relevant to critical behaviour. Instead of clusters 
we should perhaps use configurations consisting of correlated groups of spins which 
become identical with physical droplets at sufficiently low temperatures but which 
break down into individual spins as T + cc (similar ideas have been put forward recently 
by Binder et a1 1975). Such configurations cannot readily be studied by Monte Carlo 
methods, but they can help in a theoretical understanding of condensation and critical 
behaviour (Domb 1975). 

We summarize our main conclusions as follows: 
(i) In percolation phenomena ramified clusters play a dominant part. 
(ii) Near T,  clusters deviate markedly from a compact circular shape. 
(iii) The parameters in Fisher's droplet model should be treated as empirical averages 

and should not be related directly to cluster shapes. 
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